Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2262: 233-250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977480

RESUMO

On the plasma membrane, Ras is organized into laterally segregated proteo-lipid complexes called nanoclusters. The extent of Ras nanoclustering correlates with its signaling output, positioning nanocluster as dynamic signaling gain modulators. Recent evidence suggests that stacked dimers of Ras and Raf are elemental units at least of one type of Ras nanocluster. However, it is still incompletely understood, in which physiological contexts nanoclustering is regulated and which constituents are parts of nanocluster. Nonetheless, disruption of nanoclustering faithfully diminishes Ras activity in cells, suggesting Ras nanocluster as potential drug targets.While there are several methods available to study Ras nanocluster , fluorescence or Förster resonance energy transfer (FRET ) between fluorescently labeled, nanoclustered Ras proteins is a relatively simple readout. FRET measurements using fluorescence lifetime imaging microscopy (FLIM ) have proven to be robust and sensitive to determine Ras nanoclustering changes. Loss of FRET that emerges due to nanoclustering reports on all processes upstream of Ras nanoclustering, i.e., also on proper trafficking or lipid modification of Ras. Here we report our standard FLIM-FRET protocol to measure nanoclustering-dependent FRET of Ras in mammalian cells. Importantly, nanoclustering-dependent FRET is one of the few methods that can detect differences between the Ras isoforms.


Assuntos
Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Lipídeos de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Nanopartículas/química , Proteínas ras/metabolismo , Membrana Celular/ultraestrutura , Humanos , Transdução de Sinais
2.
Cancers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672199

RESUMO

The ATP-competitive inhibitors of Hsp90 have been tested predominantly in kinase addicted cancers; however, they have had limited success. A mechanistic connection between Hsp90 and oncogenic K-Ras is not known. Here, we show that K-Ras selectivity is enabled by the loss of the K-Ras membrane nanocluster modulator galectin-3 downstream of the Hsp90 client HIF-1α. This mechanism suggests a higher drug sensitivity in the context of KRAS mutant, HIF-1α-high and/or Gal3-high cancer cells, such as those found, in particular, in pancreatic adenocarcinoma. The low toxicity of conglobatin further indicates a beneficial on-target toxicity profile for Hsp90/Cdc37 interface inhibitors. We therefore computationally screened >7 M compounds, and identified four novel small molecules with activities of 4 µM-44 µM in vitro. All of the compounds were K-Ras selective, and potently decreased the Hsp90 client protein levels without inducing the heat shock response. Moreover, they all inhibited the 2D proliferation of breast, pancreatic, and lung cancer cell lines. The most active compounds from each scaffold, furthermore, significantly blocked 3D spheroids and the growth of K-Ras-dependent microtumors. We foresee new opportunities for improved Hsp90/Cdc37 interface inhibitors in cancer and other aging-associated diseases.

3.
Sci Rep ; 7(1): 8944, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827765

RESUMO

As a major growth factor transducer, Ras is an upstream activator of mTORC1, which further integrates nutrient and energy inputs. To ensure a contextual coupling of cell division via Ras/MAPK-signalling and growth via mTORC1-signalling, feedback loops from one pathway back to the other are required. Here we describe a novel feedback from mTORC1, which oppositely affects oncogenic H-ras- and K-ras-signalling output, and as a consequence stemness properties of tumourigenic cells. Amino acid stimulation of mTORC1 increases the processed form of SREBP1, a major lipidome regulator. We show that modulation of the SREBP1 levels downstream of S6K1 has opposite effects on oncogenic H-ras and K-ras nanoscale membrane organisation, ensuing signalling output and promotion of mammospheres expressing these oncogenes. Our data suggest that modulation of phosphatidic acid, a major target of SREBP1 controlled lipid metabolism, is sufficient to affect H-ras and K-ras oppositely in the membrane. Thus mTORC1 activation increases H-ras-, but decreases K-ras-signalling output in cells transformed with the respective oncogene. Given the different impact of these two Ras isoforms on stemness, our results could have implications for stem cell biology and inhibition of cancer stem cells.


Assuntos
Retroalimentação Fisiológica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Células-Tronco Neoplásicas/metabolismo , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais
4.
Oncotarget ; 8(27): 44550-44566, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28562352

RESUMO

Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.


Assuntos
Autorrenovação Celular/genética , Galectina 1/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas ras/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Galectina 1/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Esferoides Celulares , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Células Tumorais Cultivadas , Proteínas ras/metabolismo
5.
PLoS One ; 11(7): e0159677, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27437940

RESUMO

Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2's interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2's ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events.


Assuntos
Neoplasias/genética , Proteína Oncogênica v-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Supressoras de Tumor/genética , Proteínas ras/genética , Animais , Apoptose/genética , Carcinogênese/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Transformação Celular Neoplásica/genética , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Alicerces Teciduais , Proteínas Supressoras de Tumor/biossíntese , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo
6.
J Lab Autom ; 21(2): 238-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26384400

RESUMO

Fluorescence resonance energy transfer (FRET) is widely used to study conformational changes of macromolecules and protein-protein, protein-nucleic acid, and protein-small molecule interactions. FRET biosensors can serve as valuable secondary assays in drug discovery and for target validation in mammalian cells. Fluorescence lifetime imaging microscopy (FLIM) allows precise quantification of the FRET efficiency in intact cells, as FLIM is independent of fluorophore concentration, detection efficiency, and fluorescence intensity. We have developed an automated FLIM system using a commercial frequency domain FLIM attachment (Lambert Instruments) for wide-field imaging. Our automated FLIM system is capable of imaging and analyzing up to 50 different positions of a slide in less than 4 min, or the inner 60 wells of a 96-well plate in less than 20 min. Automation is achieved using a motorized stage and controller (Prior Scientific) coupled with a Zeiss Axio Observer body and full integration into the Lambert Instruments FLIM acquisition software. As an application example, we analyze the interaction of the oncoprotein Ras and its effector Raf after drug treatment. In conclusion, our automated FLIM imaging system requires only commercial components and may therefore allow for a broader use of this technique in chemogenomics projects.


Assuntos
Automação Laboratorial/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Mapeamento de Interação de Proteínas/métodos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Quinases raf/metabolismo , Proteínas ras/metabolismo
7.
Eur J Med Chem ; 84: 77-89, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25016230

RESUMO

Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards this enzyme compared to prenyl pyrophosphate synthases. New insights into structural requirements are also presented, showing that only PC analogs of the most potent 3rd generation bisphosphonates inhibit RGGT. In addition, the first phosphonocarboxylate-derived GGPPS inhibitor is reported.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Organofosfonatos/farmacologia , Alquil e Aril Transferases/metabolismo , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HeLa , Humanos , Estrutura Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade
8.
J Cell Sci ; 124(Pt 2): 216-27, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21172807

RESUMO

The p38 mitogen-activated protein kinase (p38 MAPK) family, which is comprised of four protein isoforms, p38α, p38ß, p38γ and p38δ, forms one of the key MAPK pathways. The p38 MAPKs are implicated in many cellular processes including inflammation, differentiation, cell growth, cell cycle and cell death. The function of p38 MAPKs in mitotic entry has been well established, but their role in mitotic progression has remained controversial. We identify p38γ MAPK as a modulator of mitotic progression and mitotic cell death. In HeLa cells, loss of p38γ results in multipolar spindle formation and chromosome misalignment, which induce a transient M phase arrest. The majority of p38γ-depleted cells die at mitotic arrest or soon after abnormal exit from M-phase. We show that p38 MAPKs are activated at the kinetochores and spindle poles throughout mitosis by kinase(s) that are stably bound to these structures. Finally, p38γ is required for the normal kinetochore localization of polo-like kinase 1 (Plk1), and this contributes to the activity of the p38 MAPK pathway. Our data suggest a link between mitotic regulation and the p38 MAPK pathway, in which p38γ prevents chromosomal instability and supports mitotic cell viability.


Assuntos
Células/citologia , Células/enzimologia , Proteína Quinase 12 Ativada por Mitógeno/deficiência , Mitose , Morte Celular , Linhagem Celular , Sobrevivência Celular , Células HeLa , Humanos , Proteína Quinase 12 Ativada por Mitógeno/genética , Fuso Acromático/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...